Popularity
3.1
Stable
Activity
3.2
Stable
155
6
16

Programming language: Swift
License: MIT License
Tags: Concurrency    
Latest version: v1.4.0

AsyncNinja alternatives and similar libraries

Based on the "Concurrency" category.
Alternatively, view AsyncNinja alternatives based on common mentions on social networks and blogs.

Do you think we are missing an alternative of AsyncNinja or a related project?

Add another 'Concurrency' Library

README

[AsyncNinja Title](title_image.png)

A complete set of primitives for concurrency and reactive programming on Swift

Gitter CocoaPods Carthage compatible Build Status

  • 1.4.0 is the latest and greatest, but only for Swift 4.2 and 5.0
  • use 1.3.0 is for Swift 4.0+
  • use 1.2.4 for latest release for Swift 3
Features
πŸ¦„ powerful primitives Future, Promise, Channel, Producer, Sink, Cache, ...
🀘 versatile transformations map, filter, recover, debounce, distinct, ...
✌️ convenient combination flatMap, merge, zip, sample, scan, reduce, ...
πŸ™Œ improves existing things Key-Value Observing, target-action, notifications, bindings
🍳 less boilerplate code neat cancellation, threading, memory manament
πŸ•Ά extendable powerful extensions for URLSession, UI controls, CoreData, ...
🍱 all platforms πŸ–₯ macOS 10.10+ πŸ“± iOS 8.0+ πŸ“Ί tvOS 9.0+ ⌚️ watchOS 2.0+ 🐧 Linux
πŸ€“ documentation 100% + sample code, see full documentation
πŸ”© simple integration [SPM](Documentation/Integration.md#using-swift-package-manager), [CocoaPods](Documentation/Integration.md#cocoapods), [Carthage](Documentation/Integration.md#сarthage)
  • Related articles
  • [Known users](known_users.md)

Communication

Reactive Programming

reactive properties
let searchResults = searchBar.rp.text
  .debounce(interval: 0.3)
  .distinct()
  .flatMap(behavior: .keepLatestTransform) { (query) -> Future<[SearchResult]> in
    return query.isEmpty
      ? .just([])
      : searchGitHub(query: query).recover([])
  }
bindings
  • unbinds automatically
  • dispatches to a correct queue automatically
  • no .observeOn(MainScheduler.instance) and .disposed(by: disposeBag)
class MyViewController: UIViewController {
  /* ... */
  @IBOutlet weak var myLabel: UILabel!

  override func viewDidLoad() {
    super.viewDidLoad()
    UIDevice.current.rp.orientation
      .map { $0.description }
      .bind(myLabel.rp.text)
  }

  /* ... */
}
contexts usage
  • no [weak self]
  • no DispatchQueue.main.async { ... }
  • no .observeOn(MainScheduler.instance)
class MyViewController: NSViewController {
  let service: MyService

  /* ... */

  func fetchAndPresentItems(for request: Request) {
    service.perform(request: request)
      .map(context: self, executor: .primary) { (self, response) in
        return self.items(from: response)
      }
      .onSuccess(context: self) { (self, items) in
        self.present(items: items)
      }
      .onFailure(context: self) { (self, error) in
        self.present(error: error)
      }
  }

  func items(from response: Response) throws -> [Items] {
    /* ... extract items from response ... */
  }

  func present(items: [Items]) {
    /* ... update UI ... */
  }
}

class MyService {
  func perform(request: Request) -> Future<Response> {
    /* ... */
  }
}

In Depth

Let's assume that we have:

  • Person is an example of a struct that contains information about the person.
  • MyService is an example of a class that serves as an entry point to the model. Works in a background.
  • MyViewController is an example of a class that manages UI-related instances. Works on the main queue.
Code on callbacks
extension MyViewController {
  func present(personWithID identifier: String) {
    myService.fetch(personWithID: identifier) {
      (person, error) in

      /* do not forget to dispatch to the main queue */
      DispatchQueue.main.async {

        /* do not forget the [weak self] */
        [weak self] in
        guard let strongSelf = self
          else { return }

        if let person = person {
          strongSelf.present(person: person)
        } else if let error = error {
          strongSelf.present(error: error)
        } else {
          fatalError("There is neither person nor error. What has happened to this world?")
        }
      }
    }
  }
}

extension MyService {
  func fetch(personWithID: String, callback: @escaping (Person?, Error?) -> Void) {
    /* ... */
  }
}
  • "do not forget" comment x2
  • the block will be retained and called even if MyViewController was already deallocated
Code with other libraries that provide futures
extension MyViewController {
  func present(personWithID identifier: String) {
    myService.fetch(personWithID: identifier)

      /* do not forget to dispatch to the main queue */
      .onComplete(executor: .main) {

        /* do not forget the [weak self] */
        [weak self] (completion) in
        if let strongSelf = self {
          completion.onSuccess(strongSelf.present(person:))
          completion.onFailure(strongSelf.present(error:))
        }
      }
  }
}

extension MyService {
  func fetch(personWithID: String) -> Future<Person> {
    /* ... */
  }
}
  • "do not forget" comment x2
  • the block will be retained and called even if MyViewController was already deallocated
Code with AsyncNinja
extension MyViewController {
  func present(personWithID identifier: String) {
    myService.fetch(personWithID: identifier)
      .onSuccess(context: self) { (self, person) in
        self.present(person: person)
      }
      .onFailure(context: self) { (self, error) in
        self.present(error: error)
      }
  }
}

extension MyService {
  func fetch(personWithID: String) -> Future<Person> {
    /* ... */
  }
}

Using Futures

Let's assume that we have function that finds all prime numbers lesser than n

func primeNumbers(to n: Int) -> [Int] { /* ... */ }
Making future
let futurePrimeNumbers: Future<[Int]> = future { primeNumbers(to: 10_000_000) }
Applying transformation
let futureSquaredPrimeNumbers = futurePrimeNumbers
  .map { (primeNumbers) -> [Int] in
    return primeNumbers.map { (number) -> Int
      return number * number
    }
  }
Synchronously waiting for completion
if let fallibleNumbers = futurePrimeNumbers.wait(seconds: 1.0) {
  print("Number of prime numbers is \(fallibleNumbers.success?.count)")
} else {
  print("Did not calculate prime numbers yet")
}
Subscribing for completion
futurePrimeNumbers.onComplete { (falliblePrimeNumbers) in
  print("Number of prime numbers is \(falliblePrimeNumbers.success?.count)")
}
Combining futures
let futureA: Future<A> = /* ... */
let futureB: Future<B> = /* ... */
let futureC: Future<C> = /* ... */
let futureABC: Future<(A, B, C)> = zip(futureA, futureB, futureC)
Transition from callbacks-based flow to futures-based flow:
class MyService {
  /* implementation */

  func fetchPerson(withID personID: Person.Identifier) -> Future<Person> {
    let promise = Promise<Person>()
    self.fetchPerson(withID: personID, callback: promise.complete)
    return promise
  }
}
Transition from futures-based flow to callbacks-based flow
class MyService {
  /* implementation */

  func fetchPerson(withID personID: Person.Identifier,
                   callback: @escaping (Fallible<Person>) -> Void) {
    self.fetchPerson(withID: personID)
      .onComplete(callback)
  }
}

Using Channels

Let's assume we have function that returns channel of prime numbers: sends prime numbers as finds them and sends number of found numbers as completion

func makeChannelOfPrimeNumbers(to n: Int) -> Channel<Int, Int> { /* ... */ }
Applying transformation
let channelOfSquaredPrimeNumbers = channelOfPrimeNumbers
  .map { (number) -> Int in
      return number * number
    }
Synchronously iterating over update values.
for number in channelOfPrimeNumbers {
  print(number)
}
Synchronously waiting for completion
if let fallibleNumberOfPrimes = channelOfPrimeNumbers.wait(seconds: 1.0) {
  print("Number of prime numbers is \(fallibleNumberOfPrimes.success)")
} else {
  print("Did not calculate prime numbers yet")
}
Synchronously waiting for completion #2
let (primeNumbers, numberOfPrimeNumbers) = channelOfPrimeNumbers.waitForAll()
Subscribing for update
channelOfPrimeNumbers.onUpdate { print("Update: \($0)") }
Subscribing for completion
channelOfPrimeNumbers.onComplete { print("Completed: \($0)") }
Making Channel
func makeChannelOfPrimeNumbers(to n: Int) -> Channel<Int, Int> {
  return channel { (update) -> Int in
    var numberOfPrimeNumbers = 0
    var isPrime = Array(repeating: true, count: n)

    for number in 2..<n where isPrime[number] {
      numberOfPrimeNumbers += 1
      update(number)

      // updating seive
      var seiveNumber = number + number
      while seiveNumber < n {
        isPrime[seiveNumber] = false
        seiveNumber += number
      }
    }

    return numberOfPrimeNumbers
  }
}